Question number	Answer	Notes	Marks
1 a	(A) refinery gases (F) bitumen		2
b	```M1 (compound/molecule/substance containing) carbon and hydrogen/C and H (atoms/elements) M2 only```	Reject atom/element/ion/mixture in place of compound/molecule/substance Reject compound/molecule/substance in place of atom/element Ignore references to bonds / long chains Accept other terms with same meaning, eg solely / exclusively / just M2 DEP on mention of carbon and hydrogen/ C and H and no other element	2

Question number	Answer	Notes	Marks
1 c	(fuel oil molecules/it/they) M1 have higher boiling points M2 are darker (in colour) M3 have higher viscosities / are more viscous	Accept converse statements about gasoline Ignore reference to melting points Ignore stronger / more intense (colours) If specific colours stated, award M2 if valid comparison, eg gasoline is yellow and fuel oil is brown, fuel oil is browner Accept thicker/stickier/flows less easily, etc in place of more viscous If gasoline, accept thinner/runnier/flows more easily, etc in place of less viscous Must be a comparison, eg not enough to say fuel oil has a high boiling point unless also a statement that gasoline has a low boiling point MAX 2 if no comparison Accept reference to fractions near the top/up the column in place of gasoline Accept reference to fractions near the bottom/down the column in place of fuel oil	3

Question number	Answer	Notes	Marks
$1 \quad \mathrm{e} \quad \mathrm{i}$ ii iii	insufficient/lack of air / oxygen OWTTE carbon monoxide / CO decreases capacity of blood (cells) to carry oxygen OR stops blood (cells) from carrying oxygen	Accept oxygen not in excess Reject no oxygen Accept CO combines with haemoglobin / forms carboxyhaemoglobin Accept CO displaces/replaces oxygen in haemoglobin Ignore CO combines with red blood cells Ignore references to suffocation / lack of oxygen in lungs stopping breathing / gas exchange Ignore just affects haemoglobin Reject destroys haemoglobin Mark all parts independently	1 1 1

Question number	Answer	Notes	Marks
$1 \quad f \quad i$ ii	M1 sulfur dioxide AND sulfur trioxide in correct order M2 sul ric acid M1 acid rain M2 specific adverse effect on specific object	Accept names with correct oxidation states Ignore dilute / concentrated Ignore hydrogen sulfate / hydrogensulfate Accept makes lakes acidic / lowers pH of lakes plants plants/trees/vegetation/crops/named example eg dies/stunted growth/harmed/damaged/poisoned Ignore deforestation Ignore leaching minerals fish fish/aquatic animals/pond life/marine life/named example eg dies/stunted growth/harmed/damaged/poisoned Ignore references to just animals Accept limestone limestone/marble reacts/corrodes/is eaten away NOT just buildings Ignore rusts or physical process such as erosion / weathering / wearing away / dissolving Accept destroys for adverse effect in all of above	2 2

Question number		Answer	Notes	Marks
2 (a)	fractional distillation		accept fractionation	1
(b)				
	Fraction	Description		
	A	it contains only gases		
	F	it is the most viscous		1
	F	it contains bitumen		1
(c)	as the number of carbon atoms/it/they increases the boiling point increases		accept reverse argument allow positive correlation ignore (directly) proportional ignore references to hydrogen atoms	1

Question number	Answer	Accept	Reject	Marks
3 (a) (i)	D - hydrocarbons		1	
(b)	S U R V T			
	First mark for S in box 1 AND R in box 3			
Second mark for V in box 4 AND T in box 5				

(Total marks for Question 3 = 3 marks)

Question number			Answer	Notes	Marks
4	a	ii iii	heated (compounds containing) hydrogen and carbon only (hydrocarbons/molecules in) D have: higher boiling point larger/bigger/heavier/longer molecules more viscous/thicker/less runny	Accept boiled / evaporated / vaporised Reject burn Ignore melts Accept substances/molecules containing ... Reject atoms/elements //mixture containing ... Reject hydrogen and carbon molecules/ions Accept alternatives such as solely M2 needs a reference to hydrogen and carbon Ignore melting point If no reference to D or F, then $0 / 3$ Accept converse statements for F	1 1 1 1 1 1
4	b	ii	silica / alumina (catalyst) $600-700^{\circ} \mathrm{C}$ (alkene has) double bond (between C atoms) OR alkane has only single bonds / no double bonds / no multiple bonds	Accept aluminosilicate / $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{SiO}_{2}$ / zeolite /broken ceramic/porous pot Accept any value or range within this range Units required Accept equivalent values in K Assume it = alkenes Accept multiple bonds Reject triple bonds Reject references to ionic bonding Ignore references to intermolecular forces	1 1 1

Question number			Answer	Notes	Marks
4		iii	$\mathrm{C}_{2} \mathrm{H}_{4}$	Accept structural and displayed formula Penalise incorrectly shown formulae eg eg C2H4 / $\mathrm{C}_{2} \mathrm{~h}_{4} / \mathrm{C}_{2}+\mathrm{H}_{4}$	1
	c	i	propene	Accept propylene / prop-1-ene Reject incorrect spellings	1
		ii	general empirical	Accept methyl group in any position Ignore shape and bond angles	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
		iii		M1 for two carbon atoms both with 2 H atoms M2 for two carbon atoms both with 1 H atom and $1 \mathrm{CH}_{3}$ group No M2 if methyl groups on 1st +2 nd, or 3 rd + 4th carbons in chain Do not penalise bonds to H of CH_{3} Max 1 if chain extended correctly $0 / 2$ if any double bonds shown Ignore brackets and ${ }_{n}$	2

(Total for Question 4 = 16 marks)

Question number	Expected Answer	Accept	Reject	Marks
5 (a) (i)	M1 contains carbon and hydrogen (atoms / elements / particles)	C and H for carbon and hydrogen	ions / carbon molecules / hydrogen molecules / H_{2} / mixture of C and H	1
	M2 only	other equivalent words, eg solely / entirely / completely		1
	M2 DEP on M1, but allow M2 if molecules / ions / mixture used in M1			
(ii)	$\mathrm{C}_{10} \mathrm{H}_{22}$ IGNORE structural formula	$\mathrm{H}_{22} \mathrm{C}_{10}$	Reject superscripts / lower case c or h / full size numbers	1
(b) (i)	addition	additional		1
	M1 one of the bonds in the double bond breaks	double bond breaks / double bond becomes single bond changes (from unsaturated) to saturated		1
	```M2 (many) ethene(s)/molecules/monomers join (together) OR (many) ethene(s)/molecules/monomers form a chain```			1


Question number	Expected Answer	Accept	Reject	Marks
5 (c)	Any 4 from:   - produces smaller / shorter (chain) molecules   - smaller / shorter (chain) molecules more useful (as fuels) / have greater demand   - smaller / shorter (chain) molecules burn more cleanly /are used to make petrol/diesel/fuel for vehicles   - crude oil richer in / has a surplus of long (chain) molecules   - produces alkenes / any named alkene   - alkenes used to make alcohol / polymers / plastics / chemical feedstock / any named addition polymer	ORA low(er) demand products converted to high(er) demand products   ORA		4


Question   number	Answer	Notes	Marks
6 a	fractional distillation/fractionating   column/tower   (crude oil) heated/vaporised / boiled   cooler at top/hotter at bottom/idea of   temperature gradient   fractions condense /separate at different   heights/levels   fractions have different boiling points/ranges	Reference to fractional / fractionating   needed   Ignore references to fracking   Accept components / hydrocarbons /   Accept separate at different temperatures   Ignore references to melting point   Any four for 1 mark each   If any reference to cracking, MAX 2   M1 - M4 can be scored from suitably   labelled diagram	4


Question number	Answer	Notes	Marks
$6 \quad b \quad i$   ii		Do not penalise inappropriate spaces or failure to show 2 and $n$ as subscripts   Ignore specific examples such as react with oxygen   Ignore similar (type of) reactivity Do not penalise reference to trends Accept reference to specific property, eg boiling point   Reject same / similar physical properties Ignore variable physical properties Ignore reference to specific group   Any two for 1 each   Accept two answers on one answer line Ignore any reference to properties not specified as physical or chemical	$1$ $2$
c	$\begin{array}{llll}(1) & 5 & 3 & 4\end{array}$	Accept multiples and fractions	1
d i   ii	carbon monoxide / CO   reduces capacity of blood to carry oxygen / OWTTE	Accept correct explanation involving haemoglobin Ignore references to carbon monoxide reacting with blood / red blood cells	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
iii	nitrogen/ $\mathrm{N}_{2}$ AND oxygen/ $\mathrm{O}_{2}$	Accept in either order Ignore N and O	1


Question number	Answer	Notes	Marks
6 e		Penalise missing H atoms once only provided all bonds are correctly shown Penalise missing bonds in both structures	$1$



